skip to main content


Search for: All records

Creators/Authors contains: "Runkle, Benjamin R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Nature-based Climate Solutions are landscape stewardship techniques to reduce greenhouse gas emissions and increase soil or biomass carbon sequestration. These mitigation approaches to climate change present an opportunity to supplement energy sector decarbonization and provide co-benefits in terms of ecosystem services and landscape productivity. The biological engineering profession must be involved in the research and implementation of these solutions—developing new tools to aid in decision-making, methods to optimize across different objectives, and new messaging frameworks to assist in prioritizing among different options. Furthermore, the biological engineering curriculum should be redesigned to reflect the needs of carbon-based landscape management. While doing so, the biological engineering community has an opportunity to embed justice, equity, diversity, and inclusion within both the classroom and the profession. Together these transformations will enhance our capacity to use sustainable landscape management as an active tool to mitigate the risks of climate change. 
    more » « less
  2. null (Ed.)
    Eddy covariance measurement systems provide direct observation of the exchange of greenhouse gases between ecosystems and the atmosphere, but have only occasionally been intentionally applied to quantify the carbon dynamics associated with specific climate mitigation strategies. Natural climate solutions (NCS) harness the photosynthetic power of ecosystems to avoid emissions and remove atmospheric carbon dioxide (CO2), sequestering it in biological carbon pools. In this perspective, we aim to determine which kinds of NCS strategies are most suitable for ecosystem-scale flux measurements and how these measurements should be deployed for diverse NCS scales and goals. We find that ecosystem-scale flux measurements bring unique value when assessing NCS strategies characterized by inaccessible and hard-to-observe carbon pool changes, important non-CO2 greenhouse gas fluxes, the potential for biophysical impacts, or dynamic successional changes. We propose three deployment types for ecosystem-scale flux measurements at various NCS scales to constrain wide uncertainties and chart a workable path forward: “pilot”, “upscale”, and “monitor”. Together, the integration of ecosystem-scale flux measurements by the NCS community and the prioritization of NCS measurements by the flux community, have the potential to improve accounting in ways that capture the net impacts, unintended feedbacks, and on-the-ground specifics of a wide range of emerging NCS strategies. 
    more » « less
  3. null (Ed.)
    With population growth and resource depletion, maximizing the efficiency of soybean (Glycine max [L.] Merr.) and rice (Oryza sativa L.) cropping systems is urgently needed. The goal of this study was to shed light on precise irrigation amounts and optimal agronomic practices via simulating rice–rice and soybean–rice crop rotations in the Agricultural Policy/Environmental eXtender (APEX) model. The APEX model was calibrated using observations from five fields under soybean–rice rotation in Arkansas from 2017 to 2019 and remote sensing leaf area index (LAI) values to assess modeled vegetation growth. Different irrigation practices were assessed, including conventional flooding (CVF), known as cascade, multiple inlet rice irrigation with polypipe (MIRI), and furrow irrigation (FIR). The amount of water used differed between fields, following each field’s measured or estimated input. Moreover, fields were managed with either continuous flooding (CF) or alternate wetting and drying (AWD) irrigation. Two 20-year scenarios were simulated to test yield changes: (1) between rice–rice and soybean–rice rotation and (2) under reduced irrigation amounts. After calibration with crop yield and LAI, the modeled LAI correlated to the observations with R2 values greater than 0.66, and the percent bias (PBIAS) values were within 32%. The PBIAS and percent difference for modeled versus observed yield were within 2.5% for rice and 15% for soybean. Contrary to expectation, the rice–rice and soybean–rice rotation yields were not statistically significant. The results of the reduced irrigation scenario differed by field, but reducing irrigation beyond 20% from the original amount input by the farmers significantly reduced yields in all fields, except for one field that was over-irrigated. 
    more » « less
  4. A semi-empirical approach based on surface-renewal theory for estimating the friction velocity is tested for measurements taken in the inertial sublayer. For unstable cases, the input requirements are the mean wind speed and the high-frequency trace (10 or 20 Hz) of the air or sonic temperature. The method has been extended to traces of water vapour (H2O) and carbon dioxide (CO2) concentrations. For stable cases, the stability parameter must also be considered. The method’s performance, taking the direct friction velocity measured by sonic anemometry as a reference, was tested over a growing cotton field that included bare soil with some crop residues at the beginning of the season. In general, the proposed friction-velocity estimates are reliable. For unstable cases, the method shows the potential to outperform the wind logarithmic-law computation. Discarding cases with low wind speeds (e.g., <0.3 m s−1 and mean wind shear<1 Hz), the proposed approach may be recommended as an alternative method to estimating the friction velocity. There is the potential, based on the input requirements, that the proposed formulation may offer significant advantages in the estimation of the friction velocity in some marine environments. 
    more » « less
  5. Abstract Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994–2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm −2 ) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types. 
    more » « less
  6. null (Ed.)
    Abstract Wetland methane (CH 4 ) emissions ( $${F}_{{{CH}}_{4}}$$ F C H 4 ) are important in global carbon budgets and climate change assessments. Currently, $${F}_{{{CH}}_{4}}$$ F C H 4 projections rely on prescribed static temperature sensitivity that varies among biogeochemical models. Meta-analyses have proposed a consistent $${F}_{{{CH}}_{4}}$$ F C H 4 temperature dependence across spatial scales for use in models; however, site-level studies demonstrate that $${F}_{{{CH}}_{4}}$$ F C H 4 are often controlled by factors beyond temperature. Here, we evaluate the relationship between $${F}_{{{CH}}_{4}}$$ F C H 4 and temperature using observations from the FLUXNET-CH 4 database. Measurements collected across the globe show substantial seasonal hysteresis between $${F}_{{{CH}}_{4}}$$ F C H 4 and temperature, suggesting larger $${F}_{{{CH}}_{4}}$$ F C H 4 sensitivity to temperature later in the frost-free season (about 77% of site-years). Results derived from a machine-learning model and several regression models highlight the importance of representing the large spatial and temporal variability within site-years and ecosystem types. Mechanistic advancements in biogeochemical model parameterization and detailed measurements in factors modulating CH 4 production are thus needed to improve global CH 4 budget assessments. 
    more » « less
  7. null (Ed.)
  8. null (Ed.)
  9. This paper describes the formation of, and initial results for, a new FLUXNET coordination network for ecosystem-scale methane (CH 4 ) measurements at 60 sites globally, organized by the Global Carbon Project in partnership with other initiatives and regional flux tower networks. The objectives of the effort are presented along with an overview of the coverage of eddy covariance (EC) CH 4 flux measurements globally, initial results comparing CH 4 fluxes across the sites, and future research directions and needs. Annual estimates of net CH 4 fluxes across sites ranged from −0.2 ± 0.02 g C m –2 yr –1 for an upland forest site to 114.9 ± 13.4 g C m –2 yr –1 for an estuarine freshwater marsh, with fluxes exceeding 40 g C m –2 yr –1 at multiple sites. Average annual soil and air temperatures were found to be the strongest predictor of annual CH 4 flux across wetland sites globally. Water table position was positively correlated with annual CH 4 emissions, although only for wetland sites that were not consistently inundated throughout the year. The ratio of annual CH 4 fluxes to ecosystem respiration increased significantly with mean site temperature. Uncertainties in annual CH 4 estimates due to gap-filling and random errors were on average ±1.6 g C m –2 yr –1 at 95% confidence, with the relative error decreasing exponentially with increasing flux magnitude across sites. Through the analysis and synthesis of a growing EC CH 4 flux database, the controls on ecosystem CH 4 fluxes can be better understood, used to inform and validate Earth system models, and reconcile differences between land surface model- and atmospheric-based estimates of CH 4 emissions. 
    more » « less